- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources3
- Resource Type
-
0003000000000000
- More
- Availability
-
21
- Author / Contributor
- Filter by Author / Creator
-
-
Derezinski, M (3)
-
Hsu, D (2)
-
Warmuth, M (2)
-
Musco, C (1)
-
Yang, J (1)
-
#Tyler Phillips, Kenneth E. (0)
-
#Willis, Ciara (0)
-
& Abreu-Ramos, E. D. (0)
-
& Abramson, C. I. (0)
-
& Abreu-Ramos, E. D. (0)
-
& Adams, S.G. (0)
-
& Ahmed, K. (0)
-
& Ahmed, Khadija. (0)
-
& Aina, D.K. Jr. (0)
-
& Akcil-Okan, O. (0)
-
& Akuom, D. (0)
-
& Aleven, V. (0)
-
& Andrews-Larson, C. (0)
-
& Archibald, J. (0)
-
& Arnett, N. (0)
-
- Filter by Editor
-
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
(submitted - in Review for IEEE ICASSP-2024) (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
We present a new class of preconditioned iterative methods for solving linear systems of the form Ax=b. Our methods are based on constructing a low-rank Nyström approximation to A using sparse random matrix sketching. This approximation is used to construct a preconditioner, which itself is inverted quickly using additional levels of random sketching and preconditioning. We prove that the convergence of our methods depends on a natural average condition number of A, which improves as the rank of the Nyström approximation increases. Concretely, this allows us to obtain faster runtimes for a number of fundamental linear algebraic problems: 1. We show how to solve any n×n linear system that is well-conditioned except for k outlying large singular values in O~(n^2.065+k^ω) time, improving on a recent result of [Dereziński, Yang, STOC 2024] for all k≳n^0.78. 2. We give the first O~(n^2+d_λ^ω) time algorithm for solving a regularized linear system (A+λI)x=b, where A is positive semidefinite with effective dimension d_λ=tr(A(A+λI)^{−1}). This problem arises in applications like Gaussian process regression. 3. We give faster algorithms for approximating Schatten p-norms and other matrix norms. For example, for the Schatten 1-norm (nuclear norm), we give an algorithm that runs in O~(n ^{2.11}) time, improving on an O~(n ^{2.18}) method of [Musco et al., ITCS 2018]. All results are proven in the real RAM model of computation. Interestingly, previous state-of-the-art algorithms for most of the problems above relied on stochastic iterative methods, like stochastic coordinate and gradient descent. Our work takes a completely different approach, instead leveraging tools from matrix sketching.more » « lessFree, publicly-accessible full text available January 1, 2026
-
Derezinski, M; Warmuth, M; Hsu, D (, International Conference on Artificial Intelligence and Statistics)
-
Derezinski, M; Warmuth, M; Hsu, D (, Neural Information Processing Systems)
An official website of the United States government

Full Text Available