skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Derezinski, M"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. We present a new class of preconditioned iterative methods for solving linear systems of the form Ax=b. Our methods are based on constructing a low-rank Nyström approximation to A using sparse random matrix sketching. This approximation is used to construct a preconditioner, which itself is inverted quickly using additional levels of random sketching and preconditioning. We prove that the convergence of our methods depends on a natural average condition number of A, which improves as the rank of the Nyström approximation increases. Concretely, this allows us to obtain faster runtimes for a number of fundamental linear algebraic problems: 1. We show how to solve any n×n linear system that is well-conditioned except for k outlying large singular values in O~(n^2.065+k^ω) time, improving on a recent result of [Dereziński, Yang, STOC 2024] for all k≳n^0.78. 2. We give the first O~(n^2+d_λ^ω) time algorithm for solving a regularized linear system (A+λI)x=b, where A is positive semidefinite with effective dimension d_λ=tr(A(A+λI)^{−1}). This problem arises in applications like Gaussian process regression. 3. We give faster algorithms for approximating Schatten p-norms and other matrix norms. For example, for the Schatten 1-norm (nuclear norm), we give an algorithm that runs in O~(n ^{2.11}) time, improving on an O~(n ^{2.18}) method of [Musco et al., ITCS 2018]. All results are proven in the real RAM model of computation. Interestingly, previous state-of-the-art algorithms for most of the problems above relied on stochastic iterative methods, like stochastic coordinate and gradient descent. Our work takes a completely different approach, instead leveraging tools from matrix sketching. 
    more » « less
    Free, publicly-accessible full text available January 1, 2026